skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hua, Jianfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plasma wakefield acceleration in the nonlinear blowout regime has achieved marked milestones in electron beam acceleration, demonstrating high acceleration gradients and energy efficiency while preserving excellent beam quality. However, this regime is deemed unsuitable for achieving positron acceleration of comparable results, which is vital for future compact electron–positron colliders. In this article, we find that an intense positron beam loaded at the back of beam-driven blowout cavity can self-consistently induce the focusing field and flatten the longitudinal wakefield, leading to stable, high-efficiency, and high-quality positron acceleration. This is achieved through the formation of an on-axis electron filament induced by positron beam load, which shapes the plasma wakefield in a distinct way compared to electron beam load in the blowout regime. Via a nonlinear analytic model and numerical simulations, we explain the novel beam loading effects of the interaction between the on-axis filament and the blowout cavity. High-fidelity simulations show that a high-charge positron beam can be accelerated with >20% energy transfer efficiency, ~1% energy spread, and ~1 mm·mrad normalized emittance, while considerably depleting the energy of the drive beam. The concept can also be extended to simultaneous acceleration of electron and positron beams and high transformer ratio positron acceleration as well. This development offers a new route for the application of plasma wakefield acceleration into particle physics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. The emergence of multi-petawatt laser facilities is expected to push forward the maximum energy gain that can be achieved in a single stage of a laser wakefield acceleration (LWFA) to tens of giga-electron volts, which begs the question—is it likely to impact particle physics by providing a truly compact particle collider? Colliders have very stringent requirements on beam energy, acceleration efficiency, and beam quality. In this article, we propose an LWFA scheme that can for the first time simultaneously achieve hitherto unrealized acceleration efficiency from the laser to the electron beam of >20% and a sub-1% energy spread using a stepwise plasma structure and a nonlinearly chirped laser pulse. Three-dimensional high-fidelity simulations show that the nonlinear chirp can effectively mitigate the laser waveform distortion and lengthen the acceleration distance. This, combined with an interstage rephasing process in the stepwise plasma, can triple the beam energy gain compared to that in a uniform plasma for a fixed laser energy, thereby dramatically increasing the efficiency. A dynamic beam loading effect can almost perfectly cancel the energy chirp that arises during the acceleration, leading to the sub-percent energy spread. This scheme is highly scalable and can be applied to petawatt LWFA scenarios. Scaling laws are obtained, which suggest that electron beams with parameters relevant for a Higgs factory could be reached with the proposed high-efficiency, low-energy-spread scheme. 
    more » « less
  3. The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas. However, this instability has been challenging to measure in a stationary terrestrial plasma because of the difficulty in preparing such a velocity distribution. Here, we use picosecond laser ionization of hydrogen gas to initialize such an electron distribution function. We record the 2D evolution of the magnetic field associated with the Weibel instability by imaging the deflections of a relativistic electron beam with a picosecond temporal duration and show that the measured k -resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ~1% of the plasma thermal energy into magnetic energy, thus supporting the notion that the magnetic field induced by the Weibel instability may be able to provide a seed for the galactic dynamo. 
    more » « less